Development of Efficient On-Chip Networks
for High-Performance Processors

Duraid Madina
RIKEN ASI
Ono-cho 61-1, Tsurumi
Yokohama, Japan 230-0046

1. INTRODUCTION

High-performance computers have historically been one
of the main drivers behind high-performance networks. A
significant body of work into network toplogies, signalling
techniques, routing, broadcast and reduction algorithms ex-
ists and continues to grow.

However, to this day, modern high-performance comput-
ers, including the RIKEN “Next-Generation” supercomputer
(NSC), are partitioned such that the high-performance in-
terconnect is entirely distinct from the processors. In the
case of the NSC, its processors contain at their heart a
crossbar switch which has no interaction with the external
network except through a dedicated I/O port. That is to
say, it is not possible for individual processor cores to ad-
dress each other through the network in a uniform manner;
instead, cores in the same silicon processor “address” each
other through the on-chip crossbar, while cores in different
processor chips must traverse through the local crossbar,
then through the interconnect, and finally through the des-
tination chip’s crossbar.

Currently, the fact that the interconnect fabrics of modern
supercomputers do not reach into the processors themselves
is not a major concern, since the number of cores in a pro-
cessor is on the order of 10 or so.

2. ON-CHIP NETWORKS

In the near future (perhaps 5 to 10 years from today),
the number of cores on processors intended for scientific ap-
plications is likely to approach 100. In this case, existing
approaches to processor core interconnection become diffi-
cult. Simply using buses becomes difficult since even modest
amounts of traffic (e.g. instruction cache fills) could quickly
overwhelm a shared bus. Widening or splitting buses in an
ad-hoc manner has its own difficulties, and so another com-
mon approach is to interconnect processor cores through a
large crossbar switch.

This technique has been adopted by a number of com-
mercial processor designs similar to a hypothetical 8-core
processor illustrated in Figure 1. Assuming the crossbar
has an area of approximately 20mm?, it is likely to amount
to no more than 5% of the chip area, a reasonable physi-
cal cost. Since the any-to-any connectivity of the crossbar
completely avoids performance bottlenecks related to traffic
patterns. However, since the area, power consumption and
latency of a crossbar switch grow as the square of the number
of crossbar ports, this technique cannot be used to connect
the 16, 64 or hundreds of processor cores likely to appear in
future high-performance processors. Moreover, the crossbar

L2 Cache Core 4
—| Core 5
ﬂ
Crossbar
Core 2 Core 6
Core 3 L2 Cache Core 7

Figure 1: A hypothetical 8-core processor with split
L2 cache and centralized crossbar

already presents problems for today’s processors. Consider,
for example, the two paths highlighted in Figure 1. One path
of approximately 15mm joins the upper-left core to the lower
right one, while another path of approximately 12mm joins
the upper-right core to a cache array immediately next to
it. Notice that the path lengths correspond only weakly to
the actual distances between the endpoints: In particular,
the cache request of the upper right core becomes signifi-
cantly slower and more energy consuming due to the detour
through the central crossbar.

While it would be preferable to have a more efficient so-
lution to interconnecting processor areas today, it will be
required to interconnect the hundreds of processor cores of
future high-performance processors. Ideally, one would like
the cost (in terms of time and energy) of transporting data
within and between the memories and processor cores of a
supercomputer (whether on the same chip or on different
chips) to be limited by the fundamental physical costs of
such data transport.

Perhaps the most straightforward way to do this is to add
a complete, circuit-switched and/or packet routed network
to each chip that requires it. This technique of adding so-
called “networks on-chip” (NoCs) [1] is helpful in a number
of ways.

Firstly, they allow processor designers to avoid the prob-
lems associated with wire scaling in modern (and future)
VLSI processes. For a number of ultimately economic rea-



sons, the physical size of a high-performance processor is un-
likely to exceed 400mm? for the foreseeable future. However,
the size of not only the transistors on the processor, but also
of the wires interconnecting them, will continue to decrease.
In particular, as wires approach fundamental physical limits
(e.g. resistances dominated by the effect their cross-sectional
area has on the electronic mean free path), it will become
increasingly important for processor designers to avoid long
on-chip wires wherever possible. One of the most promising
ways they will be able to do this is to use NoCs: for exam-
ple, embedding a simple two-dimensional mesh network in a
processor chip greatly reduces the maximum wire length.

Another reason NoCs are helpful is that they can make
high-performance processors easier to design. Considering
again the example of a mesh NoC, its uniformity means that
the potentially difficult task of designing the NoC nodes only
has to be accomplished once, since the network nodes, like
the processor cores, may then be replicated (perhaps with
some small transformations) throughout the chip.

3. AN EFFICIENT ON-CHIP NETWORK

So that future high-performance processors may operate
in a more power-efficient manner, we have been developing
efficient NoCs which meet three key criteria:

e [t must be able to transmit information between points
rapidly and with minimal energy consumption

e [t must be able to route information as required with-
out incurring delays, retries or otherwise interfering
with the performance characterisitics of the other chip
components

e It must be small, reliable, and easy to integrate with
other chip blocks.

3.1 Point-to-point NoC links

We have developed the most energy-efficient high-speed
NoC links known, able to transport information across 4.5mm
distances at a rate of 8GHz while consuming less than 50fJ
per bit, several times more efficient than previously pub-
lished designs and more than an order of magnitude more
efficient than the conventional technique of inserting appro-
priately sized and spaced chains of full-swing inverters.|2]

These links operate by using a capacitively-coupled trans-
mitter to obtain pre-emphasis (compensating for the high
capacitance of the long 700nm pitch NoC link wires) and
low-swing, saving power while consuming a minimal amount
of chip area.[3] A 16:12 compressor further decreases trans-
mitter power by approximately 1/3 while also reducing the
length of highly capacitive 200nm pitch crossbar region that
must be traversed at each NoC node.

3.2 Efficient NoC Routing

Our NoCs are an effectively bufferless, hot-potato routed
network.[4] The elimination of buffers significantly reduces
latency, chip area and energy consumption, but comes at
the expense of an increased cost of router control and an in-
ability to make sophisticated routing decisions. However, we
can amortize these costs by routing only time critical and/or
control packets in this hot-potato manner. As these packets
propagate through the NoC, crossbar ports at each network
node are reserved. Once a packet has reached its destina-
tion, a circuit-switched path has been established and may

be used as if it were a point-to-point bus made of physical
wires.

While this technique appears to involve additional latency
(in that the transmitter cannot begin sending data until an
acknowledgement is received that the full end-to-end path
has been formed), in practice this penalty is insignificant
as the overwhelming majority of NoC traffic in a scientific
processor context consists of either long-lived “streaming”
data flows or latency-critical cache misses in which case the
transmitter has nothing to send, and must in any case wait
for a response from the remote cache array that will satisfy
the request (or in turn miss to the next level of memory).

In practice, our NoC implemented in a 400mm?, 64-core
processor can support random cache requests with an aver-
age latency penalty of only 720ps beyond optimally spaced
point-to-point links, or 3 cycles at 4GHz, even while any 16
cores permanently occupy connections to any other 16 cores.
NoC saturation occurs only when the NoC is approximately
65% loaded, due in large part to a folded torus-like network
topology which features links of differing lengths, allowing
routes to be detoured while still making forward progress in
one or both axes.

3.3 Reliability and Ease of Integration

The elimination of buffers means that data is held in ei-
ther the network link lines, or outside the NoC proper in
other processor structures such as cache arrays or register
files. This increases the reliability of the NoC with respect
to single-event upsets (SEUs), since a single ionizing event
will have a neglible effect on a highly capacitive and physi-
cally extended link wire, and should be unlikely to corrupt
critical data in a cache array or register file which is properly
designed to survive SEUs.

Regardless of the performance and reliability of an NoC
design, it is unlikely to be adopted by conservative pro-
cessor vendors unless it is easy to integrate (and in turn,
evalulate). Therefore, our NoC has been carefully devel-
oped to integrate with standard cell-based design tools and
techniques. In particular, all sections of the NoC, including
highly sensitive analog sections (such as receiver-side sense
amplifiers) are implemented as blocks that can be placed ei-
ther as macro blocks or as extended-height standard cells.
Since the link and crossbar wires must be carefully routed,
this routing is performed by a custom router which can parse
LEF/DEF/GDS and route around various chip blockages
such as clock and power grids or memory macros.

4. REFERENCES

[1] A. Jantsch and H. Tenhunen (eds.) Networks on Chip
Kluwer Academic Publishers, 2003

[2] D. Madina and M. Taiji. Circuit and physical design
of the MDGRAPE-4 on-chip network links. In Proc.
SLIP pp. 59-64, 2008.

[3] E. Mensink, D. Schinkel, E. A. M. Klumperink,
A. J. M. van Tuijl, and B. Nauta. A 0.28pj/b
2gb/s/ch transceiver in 90nm cmos for 10mm on-chip
interconnects. In Proc. IEEE ISSCC, pp. 414-415,
2007.

[4] C. Busch, M. Herlihy and R. Wattenhofer. Routing
without Flow Control. In Proc. SPAA, pp. 11-20, 2001.



